eBook Problem Walk-Through
Stocks A and B have the following probability distributions of expected future returns:
Probability |
A |
B |
0.1 |
(10 |
%) |
(35 |
%) |
0.1 |
3 |
|
0 |
|
0.6 |
12 |
|
20 |
|
0.1 |
22 |
|
30 |
|
0.1 |
32 |
|
46 |
|
- Calculate the expected rate of return, , for Stock B ( = 11.90%.) Do not round intermediate calculations. Round your answer to two decimal places.
%
- Calculate the standard deviation of expected returns, sA, for Stock A (sB = 20.12%.) Do not round intermediate calculations. Round your answer to two decimal places.
%
Now calculate the coefficient of variation for Stock B. Do not round intermediate calculations. Round your answer to two decimal places.
Is it possible that most investors might regard Stock B as being less risky than Stock A?
- If Stock B is more highly correlated with the market than A, then it might have the same beta as Stock A, and hence be just as risky in a portfolio sense.
- If Stock B is less highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.
- If Stock B is less highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be more risky in a portfolio sense.
- If Stock B is more highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be less risky in a portfolio sense.
- If Stock B is more highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.
-Select-IIIIIIIVVItem 4
-
Assume the risk-free rate is 4.5%. What are the Sharpe ratios for Stocks A and B? Do not round intermediate calculations. Round your answers to four decimal places.
Stock A:
Stock B:
Are these calculations consistent with the information obtained from the coefficient of variation calculations in Part b?
- In a stand-alone risk sense A is less risky than B. If Stock B is more highly correlated with the market than A, then it might have the same beta as Stock A, and hence be just as risky in a portfolio sense.
- In a stand-alone risk sense A is less risky than B. If Stock B is less highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.
- In a stand-alone risk sense A is less risky than B. If Stock B is less highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be more risky in a portfolio sense.
- In a stand-alone risk sense A is more risky than B. If Stock B is less highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.
- In a stand-alone risk sense A is more risky than B. If Stock B is less highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be more risky in a portfolio sense.
|